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Abstract: This paper proposes a honlinear model based predictive control (NMPC) algorithm for nonlinear systems
by using multiple models approach. To have a less complexity model we expand each linear sub-model on an
orthogonal Laguerre basis, the characteristic pole of which should be optimized. In this paper we propose a pole
optimization algorithm based on the Gauss-Newton method and we use the provided Laguerre multiple model
(LMM) to synthesize a NMPC algorithm. The proposed pole optimization technique as well as the NMPC using
LMM approach are validated on a chemical reactor.
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1 Introduction ent operating points. In the second and third situation,
it is assumed to have a nonlinear mathematical model
Model based predictive control (MPC) is a well-  [9-12] . In this work, we adopt the black box models
established online control Strategy which itel’atively that are identified from input]output data around dif-
computes a control signals by solving an optimiza- ferent operating points. The major drawback of the
tion prObIem over a future time horizon under certain resu|ting model is its parametric Comp|exity. To over-
process ConStraintSl.-E%]. This Optimization uses a come this prob|em’ we propose to expand each sub-
prediction model of the future plant behavior. The model on a Laguerre basis that depends on a single,
closed-loop performance depends on the choice of an real and stable pole.B,14]. The resulting model enti-
appropriate model for prediction and several tuning tied Laguerre multiple models (LMM) is a new repre-
parameters4] The goal of this work is to synthe-  sentation of multiple models approach using Laguerre
size a nonlinear model based predictive control algo- pasis characterized by a parameter vector and a pole
rithm (NMPC) of nonlinear systems modeled using vector. In this paper, we proceed to the identification
the multiple models approach proposed in the liter- of | aguerre poles and the model coefficients. In a sec-
ature for nonlinear system modeling by Takagi and ond step we propose and develop a NMPC algorithm
Sugeno §], in the context of fuzzy modeling]. This using LMM by minimizing a quadratic criterion sub-
approach represents a widespread class as it accu-ject to a set of constraints. The optimization problem

rately describes the behavior of a large number of non- s formulated as a quadratic programming (QE5]|
linear systems, although its study can be conducted

using theoretical tools developed in the linear frame- This paper is organized as follows: in section
work [7]. The concept of this approach is based on 2 we remember the principle of multiple model ap-
splitting the nonlinear system behavior into a set of proach. In section 3 we present the Laguerre multiple
operating regions and to describe each operating re- models obtained from the expansion of FIR multiple
gion by a local linear model or a sub-model. The models onLaguerre bases. In section 4 we propose the
model describing the whole non linear system behav- identification procedure of Laguerre multiple models,
ior is obtained by interpolation variable weights made where we develop a pole optimization algorithm. Sec-
between various linear models. tion 5 is devoted to develop the NMPC strategy where
In practice, sub-models are obtained by identifi- the unconstrained and constrained cases are treated.
cation, linearization around different operating points Finally, section 6 illustrates the identification proce-
or by convex polytopic transformatio][ In the first dure given in section 4 by identifying a nonlinear
situation we can identify, from input/output data, the chemical CSTR reactor using the Laguerre multiple
parameters of the local model corresponding to differ- models. The proposed NMPC algorithm is also used
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to control the output concentration of the CSTR re-
actor. To raise the efficiency of the proposed algo-
rithm we run it along with an NMPC algorithm build
on a GOBF-\olterra model of nonlinear process. The
supremacy of the proposed algorithm is confirmed.

2 Principle of multiple models ap-
proach

A multiple models is a set of LTI (Linear Time Invari-

ant) and causal sub-models aggregated by an interpo-

lation mechanism to characterize the dynamic behav-
ior of the overall nonlinear system. It is character-
ized by the number of sub-models, their structure and
the choice of weighting functions. A multiple models
structure is represented by:

L

Zﬂi('f(k)) yi(k)

=1

y(k) 1)

where, j(k) is the multiple models output], is the
sub-model numbey;(£(k)) is the weighting function
associated to thé"isub-model£(k) is the decision
variable andy; (k) is the output of the™ sub-model.
The weighting functiong:;(£(k)) allow to determine
the relative contribution of each sub-model according

to the zone where the system operates and they respect

the convexity properties given as follow :

L

Zﬂz(g(k)) =1, 0< p;(§(k)) <1Vi=1,---,L

i=1
(2)

The weighting functions can be constructed from con-

tinuous functions derivatives such as Gaussian func-

tions as follows :

)2
wi(§(k)) = exp <—7(§(k)02 0
ey = —2ER) ®)
- wy(€(F)
p2

where o; and¢; respectively are the dispersion and
the centre of the indexed variab§¢k) and L is the
number of sub-models.

3 Laguerre multiple models

In this section we exploit the FIR multiple models
in order to develop the Laguerre multiple models
(LMM). From relation (L), each sub-model can be de-
scribed by its output equation (k) given by a finite
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impulse response (FIR) model as follow:

n;—1
yilk) =Y K (G)ulk - j) @)
=0
which can be written in the matrix form as:
yi(k) = " (k) 0; (5)

with

o(k) = [u(k) uw(k —1) ... u(k —n; + 1)]7,
6; = [hi(0) hi(1) hi(2) ... Bi(n;—1)]"

(6)
From relation {) the FIR multiple models is given by:
L
y(k) = pil€(k) " (k) 6; (7)
=1
which can be written in matrix form as:
y(k) = 2" (k) © 8)
where® is the regression vector given by:
T
O(k) = [mER)e" .. prE®)e™] (9

and© € R™F is the parameter vector defined as:

o=[0Tof ... ol" (10)

The parameter number of the FIR multiple models is:
L

on = Z n;
i=1

The parameter vectdd can be estimated using the
OLS method.

(11)

The major drawback of the FIR multiple models
representation is the high number of parameters. To
overcome this problem each sub-model is expanded
on a Laguerre basislf]. According to the stability
condition of the system in the sense of Bounded In-
put Bounded Output criterion (BIBO) the coefficients
R'(j) are absolutely summable and they satisfy:

Y pG)| <o i=1, ..., L (12)
j=1

Therefore they belong to the Lebesgue space
7210, +oo[. Noting that the orthogonal Laguerre
functions form an orthogonal basis in the Lebesgue
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space, the coefficients (;j) can be then developed on
the Laguerre bases’ = {¢;}22 as follows:

Zgn

with ¢ (j, ;) represents the orthogonal functions:

(G.G), i=1,...,L (13)

mzn

) 2
£..6) = /1 - @cd(- }j Cﬂﬂg Ly
(14)
where(; €] — 1, 1] are the Laguerre poles character-

izing the base&’ andg!, are the Fourier coefficients
(i=1, ..., L). Byreplacingh(j) given by (3) in
the sub-model defined by, the resulting sub-model
can be written as:

n;—1 oo
=> D g G Guk—4),i=1,..., L
7=0 n=0
‘ (15)
Definingz? (k) the output ofn™" filter:
=> GGG uk—37)  (16)
j=1

In practice, the sum inl@) can be truncated to a finite
orderN;, we have:

ng (G,G), i=1,...,L (17)

and the sub-model output is given by:

= ghal(k), i=1 .., L (18)
n=0

The expansion of all sub-models an Laguerre bases re-
sults on a new model titled "Laguerre multiple models

(LMM)" given by:

L
y(k) = pi(C(k))yi(k) (19)

=1

with y; (k) given by (L8).
Defining the vectorg®(k) andC;, (i = 1, ..., L),

as:

2(k) = [ ah(k) @i(k) - i) )" (20)
Ci=[9 9 gt ]t (21)
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we result in the following decoupled state Laguerre
multiple models (LMM):

ik +1) = A2 (k) + byu(k)
yi = CTx'(k)
L (22)
= wil&(k))yi(k)
i=1
with, for (r =1, ---, N;)and(s =1, ---, N;)
Gi if r=s
Ay(r,s) = { (=)= DA =¢) if r>s
0 if r<s
(23)
and
bi(r) = (=) "1 —=CF-- s Ni) (24)

The outputy (k) of LMM given by (22) can be written
in the vector form as:

CT X, (k)

y(k) = (25)

where the parameter vectéf,, and the state vector
Xm(k) aren,r-dimensional and given as follow:

e ()2 (k) T
Co=| C |\ Xk = | jule®)aiR)
o | (et (k) |
(26)

with

(27)

L
TlpL: E NZ'
i=1

4 ldentification of Laguerre multiple
models
To identify the Laguerre multiple models, with

sub-models anaV truncated order, it is hecessary to
optimise the poles vectay,, € R-.

Gm = [C1y 5 Gie e, CLl

As each Laguerre sub-model is characterized /)
parameters, therefore, we have to identify,;,) pa-
rameters.

(28)
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4.1 Structural identification where the gradientG(¢,,) and the Hessian matrix
The identification of Laguerre multiple models struc- () are given by:
ture consists on estimating the numbgrof sub- DI (Cn)
models and the truncation ordé¥s, (i =1, ..., L). G(¢m) = 5 n (34)
We start by identifying the optimal numbérof sub- Cm
models by setting the truncation orders. Then, we op- O2T(Cn) BT (Con) BT (Com
timize the truncation ordera/; for the optimal num- H((m) = &) _ 07Gm) 07(6m) (35)

for th = 96,0 T T at,  ocT
ber of sub-model. Both optimizations are based on _ m m
the minimisation of the Normalized Mean Square Er- andJ((x) is the mean square error defined as:

ror (NMSEyp): LM | M
M T(m) =5 D _e(k)? = 5 > (w(k) — (k) (36)
> (s(k) =y (k) k=1 k=1
NMSEy 5 = 2()10910(’“=1 — ) (29) and its derivative is:
(ys(K)?) 0T (Cn) & Ay(k)
2 ) =S (w0 - () L (@)
m k= m
where M is the measurement numbey, (k) is the '
system output ang(k) is the model output. where:
o Iy (k) Ay (k)
4.2 Parametric identification . Zm(& (k)) . (38)
According to relation 25) we can apply the ordinary =
least square (OLS) methotl7] to identify the param- with, for (i = 1,--- , L):
eter vector and consequently the Fourier coefficients
of Laguerre sub-models. dyi(k) _ { Oyi(k)  Oyi(k) ~ — Owilk)  Oyik)
8Cm 851 852 afr afL
Crn = (XTX)"1XTY, (30) (39)
B i ti 2 ite for(s =
whereX is the (M x n,)-dimensional matrix con- IY.L.JSIEG)]_ equation22), we can write for(i, r
taining the)M state vectors ant; is the measurement oo
vector: oyi(k) oCt Oz (k)
Yy = [ys(1), ..., ys(M)]” (31) i T OB EC I Y
and
The gradient of; (k) with respect t&, is:
X ()T g (k) pect ta;
Xm(Z)T 6.%1(]{/‘) 0A; 81’Z(k5 — 1) ob;
_ _ = (k=14 A, 1
x=| U= o~ ag A g gt
: 41
X (M)T _
(M) SinceA; andb; depend only org;, therefore:
() (1) o wa@)t(1) - vpa(en)T(1) dA; ab; .
v2(21)7(2) via(z:)7(2) via(zn)T(2) =0et—=01ifi#r (42)
, &, 3
: - : - : from relations 41) and @2) and since the initial state
T N o T
vin(@1)” (M) vinr(@i)” (M) v (@r) (M) ot the ith state vector is constant, we conclude that:
wherev;, = p;(€(k)), for (i = 1,...,L) and(k = 2%, =0 it iFr (43)
1,..., M), and theX,, (k) vector is given by the rela-
tion (26) Therefore, the gradient af;(k) with respect tct, is
written:
L . '
4.3 Pole optimization . oC; - +c?8xl(k) ifi=r
For the optimization of the poles vectgy, given by Yilk) _ 3551 o0&,
(28) we execute the Gauss-Newton method as: 9&r aaci zi(k) if it
&r
it =h = (H(Gn) = M)T'G(Gn)  (33) (44)
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According to @3), the gradient of the matrid; is
given as follows:

1if r=s
0Ai(r,s) _ ) —(r—s—1)(=&)"2(1 =)
8(1 N +2(—C¢)(r78) ifr>s

0 ifs<r
(45)
and, according to the relatio24), the gradient of the
vectorb; is written:

bi(r) (r—2) 9
s = = DE@YY - 42
+(_Ci)(r*1)_7i
V11— ¢
(46)
To compute the gradient of th® parameter vectaf;
with respect to-" pole&,, we compute that of’),,:

0Cy,, [ 0C1 00y oC; oCr,

0¢; ‘[ o6 o0& 9 0 }
(47)

where, (r =1,2,--- , L)

From relation 80) we have:

OC, _3[(XTX) 1., o1 OXT

R
(48)

or

0C,

— _(XTX *Q[QX—TX X”—X}XT
7€, (XTX) 7 |G X+ X5 Yst

_1 T
(XTX)" Gy
(49)
where the matriXX is given by the relation32) and
its gradient with respect t§. is given, using41) and
(43), by:

azT (1
O1x[(r=1)(N41)]  Hr(E(1)) 3 W 01x[(L—r)(N+1)]
Oz, (2
oxX | Oix[r—1)(N+1)) m(&(@)% O1x[(L—r)(N+1)]
e = |
.ax; M
O1x[(r—1)(N41)] Hr(E(M)) 85( ) O1x [(L—r)(N+1)]

(50)

Algorithm 1 : Pole optimization algorithm

1. Assume thabd/ couples of input/output are avail-
able.
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3. Fix the number of sub-moddl, the dispersion
o;and the centet; (i =1, ..., L).

4. Calculate the weighting functions(£(t)) using
equation 8).

5. Fix a thresholdbe depending on the desired per-
formance.

6. Choose an initial-dimensional pole vectogh,
(p=1).

7. Identify the parameter vectet,, using the OLS
method given by equation (18).

8. Compute the gradiert(¢,) given by @4) and
the Hessian matri¥{ (¢,,) given by @5) of the
quadratic criterion.J(¢h,) with respect to the
poles vectoch,.

9. Calculate the new pole vectgf,™! by relation
(33).

10. Calculate theVM SE;z given by @9) for the
new pole vector?, ™.

11. If (NMSEdB > Se)
- p=p+1,
-gotostep7.

12. Else, end of the algorithm

5 NMPC using Laguerre multiple
models

5.1 Principle of the predictive control

The Model Based Predictive Control (MPC) is char-
acterized by two essential steps:

e The calculation of the system output prediction
y(k + j/k) to determine the process behavior
on the prediction horizofk + 1, k£ + N, + 1]
depending on inputs applied to the process until
the instant(k — 1)7", the outputs measured until
the instantkT" and the equations describing the
model,T" is the sample time.

e The optimisation of a criterion to determine a fu-
ture control sequence over the control horizon
Ny

2. Choose the input or output as decision variable Only the first element of the optimized sequence is

£(t).
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5.2 Thej-step ahead predictor and the output prediction becomes:

The j-step ahead predictor on the multiple models ap-
proach outpuy(k + j/k) is calculated from the equa-
tion system 22) by multiplying both members of both
equations by the polynomigl — z~1), wherez ! is ZZ“Z’@(’“ +1—1)C ik + )+
the backward shift operator, where: e

ZZ(SM (k+1) CTZM k+m)

Sxi(k) = Ajdxi(k — 1) + bdu(k — 1)  (51a) =1t m=t

7 L
y(k+5/k) = y(k) + > Y opi(€(k +1)Cl wi(k)+
=1 i=

1

(57)
After some arrangement we obtain:
y(k) = y(k—1) Jrzuz k—1)CF b (k)+ y(k+35/k) = y(k +ZZ<M (k4 1)CT zi(k)+
=1 1=1
L J i
L
dER+T=1)+) dui(E(k+n))| CTox(k+1
P plek - D) o) 22 | nzl il ”] ey
= (58)

(51b)
wheredu(k) anddz; (k) are the control increment and
the state vector increment, respectively, defined as :

where, from §18) and by successive substitutions the
state vector predictafz; (k + j) is:

l
. — Al 5 l=mpy su(le -+ m —
Sulk) = ul(k)—ulk—1). Szs(k) (k)i (k—1) Sxi(k+1) = Al s z(k)—i—mz_:lAl b; Su(k+m—1)

(52) (59)
By replacing in equation5), i;(k + 1) by its ex-

The j-step ahead prediction of the output is given pression given byS9), we obtain:

from (51b) by:

L
L k+j/k) =yk Spi(E(k + 1)) CLay(k
O+ 30 =+ )+ D el g~ )T s+ e T 2 2 e ) Gl

=1 =1
=1 7
L T AT
S i€l ) = pleCh +3 = D) Pk +9) Z“Z NG <; Az> daslk)+
=l (53) . . J Jj—l .
By successive substitutions and taking into account of Z pi(S(k+ ) CI> A | bidu(k +1—1)
y(k/k) = y(k), relation 63) leads to: ' I=1 \h=0 (60)
i TL defining:
y(k+j/k) = y(k) + D> | Y €k +1—1)CF 6z (k + 1)+ n
. =1 Li=1 Kin= ZAZT pourn > 0 etK;, =0for n < 0
D i€k +1) =k +1 = 1) CFwi(k +1) =0 61)
- (54) equation 60) becomes:
thei™" state vector to thék + 1) iteration, z; (k + 1), L
. . h -
can bg written in terms of" state vector increment Yk 3/K) = y(k) + 303 opa((k + 1) (k) +
5.%1(]6) i1 =1

L

! Zﬂi(f(k +5) CF [Kajry — Iny] 0wi(k)+
wi(k +1) = zi(k) + Y _ dxi(k +m) (55) i~ ;
e Zﬂi(f(k +4)) CF ZK(i,j—Z) b du(k +1—1)
i1 =1

defining: B (62)
wherely;, is the N;-diemsional identity matrix and/;
pi(§(k+1)) = pi(§(k+1)) — pni(§(k+1—-1)) (56) is the truncation order of thd' sub-model. Thg-step
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ahead predictor is split into two components, the free from (65), the components;, (n =0, ...,

and the forced components:

y(k+3j/k) = yp(k+j/k) +yrolk +5/k) (63)

wherey,.(k + j/k) is the free component determined
using the measured outputs #I" and the control up
to (k — 1)T.

L J
ypr(k+/k) = y(k) + D> i

=1 =1

+ >k + ) CF [Kyo -
i=1

E(k +1)CTxi(k)
(64)

andyy,(k + j/k) is the forced component resulting
from the action of future control.

yfo(k + ]/k) =
L J
> | mil€k+))CEY K jgy bidu(k +1—1)
=1 =1 (65)
Forj =1, ..., N, relation 63) becomes:
Y (k) =Yso(k) + Yir(K) (66)
where
Y(k) = [ ylk+1/k) - ylk+Np/k) ]
Yir(k) = [yp(k+1/k) - yplk+Np/k) 1"
Yiolk) = [ ysolk+1/k) -+ yrolk+ Ny/k) 1"
(67)
The vectorsYy, (k) and Yy, (k) are computed from
(64) and @5), respectively, for(i = 1, ---, N,).

Then, the prediction vectdr (k) is written in matrix
form:

Y (k)

wheredU (k) is the N,,-dimensional future control in-
crement vector.

— G U (k) + Yy (k) (68)

SU (k) = [du(k) du(k +1) --- du(k + N, — 1)]T
(69)
and theN,-dimensional matrixG is given by:
g10 0 .. 0
G- 9?1 9?0 T (70)
gNpyNp—1  gN,Np—2 9gN,0
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Np—1)
and(j =1, ..., N,) can be written as:
L
gin = >k +4) CTKinby  (71)

i=1
Taking into account the control horizaN, the rela-
tion (65) becomes:

yfo(k +]/k) =

L min(j, Nu)
Z pi(é(k)) CF Z K j—py bi du(k +1-1)
i=1 =1
(72)
Consequently the sizes of the mat€ixand the vector
0U (k) are reduced t¢N, x N,) andN,, respec-

tively.

g10 0 e 0
921 920 0
G- : : :
9i(Nu—1)  9j(N.—2) 930
L INp(Np—1)  INp(Np—2) 9Np(Np—Nu)
(73)
and
SU (k) = [6u(k) du(k +1) --- du(k + N, —1)]"

(74)

5.3 Control calculation

The control calculation is based on the minimization
of the following performance quadratic criterion:
NP

> lylk+4/k) —r(k+ ) +

j=1
Ny—1

> MG (k + )
=0

20U (k) =

(75)
where\(j) is a weighting factor generally considered
constant and equal tvandr(k + j) is the reference
signal at time instantk + 7).

Two cases will be discussed depending on the
consideration or not of physical constraints.

5.3.1 Unconstrained case

The quadratic criterion/s(6U (k)) given by {5) can
be written in matrix form as:

J2(0U (k) = |[Y (k) — R(K)||* + 6U (k)" ASU (k)
(76)
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whereA is a diagonal weighting matrix, positive def-
inite, whose diagonal elements ake Y (k) is the
prediction vector given byg7) and R(k) is the NV,-
dimensional reference vector given by:
r(k+N,) |

R(k) = r(k+1) (77)

and
A= ANy, (78)

Tacking into accountgg), relation {6) becomes:

J2(8U (k) = |GOU (k) + Yir (k) — R(K)||? + U (k)" A 0U (k)

=6UT (k) D §U (k) +2d70U (k) + ¢
(79)
with:

D =GTG+ A, d=2G" (Y. (k) — R(k)) and
¢ = (Y (k) — R(k))" (Y7, (k) — R(k))
(80)
The minimisation of 79) results in:

oU(k) = =D 'd = —(GTG+A) ' GT (Y}, (k)—R(k))

(81)
Only the first component ofU (k) is used to calculate
the command.(k) to be applied to the process.

5.3.2 Constrained case

Ghassen Marouani, Abdelkader Mbarek,
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we have:
U(k) = D1 6U(k) + Vi(k—1) (86)

where theN, -dimensional vectorsU (k) andV; and
square matrixD; are defined by:

du(k) u(k —1)
du(k +1) u(k—1)
U (k) = : W= :

du(k + Nu -1) u(k - 1)
10 --- 0
and D, = 1 1 0
11

(87)

Replacing the outpuj(k + j) by their expression pre-

dictedy(k+j/k) setting, forj = (1, --- , N,), inthe

decomposed formbg) the constraint§4) becomes:
Y SGOU + Yy (k) <Yy (88)

The constraintsg2-84) can be written as a function of
the future control increment vectét/ (k):

In practice, the processes to be controlled are gener- with :

ally subject to the constraints of the actuators tech-

nology, the control system security or the quality de-
sired for the output of the controlled process. MBPC

methods allow to take into account some of these con-

straints explicitly at minimizing the performance cri-

terion J,, to prevent their violation. These constraints,
of inequality type, are generally related to the input /
output signal amplitude on the prediction horizon.

O, < ou(k+j7) <oupyVy €{0,---, N,—1}
(82)
U <ulk+j) <upyVvje {0, ---, N,—1}
(83)
Noting that:

J
u(k+i) =Y du(k+j —h)+u(k— 1)
h=0

1, --,1 0 --,0 T
= | U)ok —1)
1 Nu—j—1
(85)
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I'oU <V (89)
[ Iy, | i U T
Iy, ~0Un,
- D, - Uy —W1
I'= D and V = U W
G Yar — Y (E)
| -G ] L =Y + Yy (F)
(90)

where theN,-dimensional vector$/y;, U,,, AUy
andAU,, are defined as follow:

Uy = [’U,M UM]T , Up = [um um]T
AUns = [uns -+ dupr]®, AU, =[St -+ Oup]”
(91)

and theN,-dimensional vector%’,, Y, andYy, are
given by:

Yar=lym - ym)' s Yoo =[Ym - yml”
Vi = [ype(k +1/k) - ype(k + Np/k)"
(92)

These constraints define a set of control increments as

follow:

U= {5U(k) / ToU <V (93)
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Taking into account the constrain8%84) on the in- (b) For(i =1, ..., L) calculatejz; (k) given
put and output signals leads to solving the constraints by (519
optimization problem, as follows: (c) For(j = 1, ..., N |

n (Jo(SUGN) = min (UL (E\DSU (k -for (i =1, ..., L) calculateK; ; using
5Ur&1)%\p( 20U (k))) 5UI&1)%\1/( (k) (k)+ relation 1)
T
orj=1, ..., compute given
2d" 6U (k) + ¢) 0 @) ) R(E) o
whereV is defined by 93). by (77) andY, glvetn by 67).
(e) Compute the matri® the vectord and the

The Hessian matriX/2J2(6U(k)) = 2D of the scalarc given by @0).
function J,(6U (k)) is positive definite, so that func- () Compute the vectoV” given by @0)
tion is strictly convex. Moreover, the constraints (g) Solve the optimization problem given by
(93) defining the convex admissible s@t are lin- (94) [15].

ear. Therefore, the optimization proble®¥) subject
to (93) is a convex quadratic programming problem

(h) Calculate the control signal k).

(QP), for which the global solution is uniqu#g]. 10. END
Similarly to the unconstrained case, only the first com-
ponent ofu(k) is applied to the system.

Algorithm 2 : NMPC Algorithm using Laguerre

6 Application to a CSTR reactor
process

multiple models 6.1 System presentation

1.

The nonlinear system is modeled by the muilti Thel_ ':IMPC algolritrr\]m bproprc])sedkinhthis plaper is
model approach using Laguerre basis where the ?:pSp'I'Ilg [13])\,;?:;;0 di; erarr?ri]; ricgrz bC Fei”L'g:‘ reactor
poles vectol,, is optimized by Algorithm 1 and g 9 yrig

the parameters vectdr,, is identified by OLS W, W,
method. c,. C,,
. Choose the prediction horizoN,, the control

horizon N,, and determine theV,-dimensional

diagonal weighting matrix. &
Choose the physical constraints given Bg-( - w
84). g’co
b
Compute theN,-dimensional vector¥/,,, U,,,,
AU,, andAU,, given by 01). Figure 1: Diagram of the chemical reactor process
CSTR
. Compute the matrice$; andb; in terms of¢,, (7)
for (1 = 1, ..., L) using equations2@3) and _ o
(24), respectively. The dynamical model of the system is given by:
. Calculate the matrice& and D, given by (73) 8?)_@) = wy(t) +wa(t) — 0.24/h(t) (95)
and 87), respectively. t
. Compute the matrik' given by Q0). 90, (1 " /
| MO — (0 - a8 1, -y 2
Choose the reference signal(k) (k = t (t)k ot (t)
1, ..., M) and initializing the input(1). —m
2Lb
fork =2 until (M — N,,) (96)

where h(t) is the liquid level,Cy(t) is the product
(@) Apply the inputs:(k—1) to the system and concentration at the process output;(¢) and Cy;
read the outpuy (k). are respectively the flow rate and the concentration
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of product 1, andwq(t) and Cy, are the flow rate
and the concentration of product 2. The input con-
centrations are set t6,; = 24.9 Kmol.m—3 and
Cha 0.15 Kmol.m—3. The constants associ-
ated with the rate of consumption ak¢ = 1 and

ko = 1. The CSTR reactor is assumed to be a Sin-
gle Input Single Output (SISO) system with (¢) as
input andC}, as output. The flow rate(¢) is fixed to

0.7 L.min—1 and the initial conditions for the CSTR
reactor arév(0) = 0.1m andCy(0) = 4Kmol.m—3.
The simulations are carried out with a sampling inter-
val T = 1s. We note that the outpuf} is corrupted

by an additive white and gaussian noise which is inde-
pendent of the input signal and which ensures a signal
to noise ratio equal te0dB.

To apply the proposed NMPC algorithm given by
Algorithm 2 to the CSTR process, we start by de-
termining the corresponding Laguerre multiple model
which requires structural identification and truncation
order by minimizing the NMSE given by20), para-
metric identification using the OLS method and poles
optimization by the proposed algorithm in this article
given by Algorithm1.

6.2 System identification
In these simulations the weighting functions are cho-

sen as a Gaussian type and the input is considered as

a decision variable with a dispersiean= 0.5. The
CSTR process is identified by the FIR multiple mod-
els and the LMM for two and three sub-systems. The
identification results are evaluated by the mean square
error (MSE) given in Tabléd and Table2 for FIR mul-

tiple models and LMM, respectively.

From both Tables we remark the significant para-
metric reduction obtained from the expansion of FIR
multiple models on Laguerre bases. For example,
for the FIR multiple models (Tabld) we obtain
a MSE —38.20dB for three sub-model and
sub-model order equal six,(ie,r = 18 parame-
ters). However, we obtain a smaller M$BR/SE =
—49,74dB) for two sub-model and sub-model order
equal two (ien,;, = 4 parameters) in the case of
LMM (Table 2).

In the flowing, and for applying the NMPC us-
ing Laguerre multiple models we can choose, from
Table 2, to decompose the CSTR process to two sub-
systems, then we use two Laguerre sub-models. Then,
for have adequate MSE we fixe the truncation order to
two. The parameter vector is identified by the OLS
method and the poles is optimized by applying algo-
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rithm 1. The identification of LMM is summarized

in Table 3. In Figure2 we plot the variation of the
poles where we notice the fast convergence of the
proposed algorithm, and the optimal pole vector is
¢ = [0.8108 0.4728].

0.9

0.85f

0.8f PRE

0.75} P

0.7f R

Poles (.

0.65F

0.6f

0.55F

05 ; ; ; ;
0 2 4 6 8
iterations

10

Figure 2: Poles convergence

Thereafter, the CSTR dynamic model given by
(95) is modeled by the LMM 22) for a sub-model
numberL = 2 and a truncation ordeN = 2, as fol-
lows:

(k4 1) = A1z (k) + bru(k)
22 (k + 1) = A22*(k) + bau(k) )
(k) = 1 (§(k))CT 21 (k) + pa(§(k))CF 2% (k)

(97)
where, A; and b, are calculated from2@) for (; =
0.8108 and A, and b, are calculated from23) for
Co = 0.4728.

To validate the Laguerre multiple models, as well
as the identification procedure, we draw in Fig@re
the variation of the CSTR reactor output and the out-
put of the model. We notice the concordance between
both outputs.

6.2.1 Control of CSTR using NMPC

The main objective is to maintain the output concen-
tration Cy(¢) constant by tuning the flow; (¢) with
wy(t) = 0.1. The tuning parameters are¥,, = 6,
N, = 2and); = 0.5. unconstrained and constrained
cases are considered.

Unconstrained case: In Figures4 and5 we draw
the control and the control increment signals and we
note the significant overflows in both signals. These
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Table 1: CSTR Process modeled by FIR multiple models

L 2 3
n; 2 3 4 5 6 | 2 3 4 5 6
Npr 4 6 8 10 12| 6 9 12

MSE (dB) | -12.3 -18.2 -28.8 -29.4 -30.1-20.6 -28.8 -35.4 -37.12 -38.20

Table 2: CSTR Process modeled by Laguerre multiple models

L 2 3
N; 2 3 4 5 6 2 3 4 5 6
NplL 4 6 8 10 12 6 9 12 15 18
MSE (dB) | -49.74 -58.25 -65.90 67.28 68.07-60.57 -70.36 -73.48 -73.9 -74.1

Table 3: Laguerre multiple models for CSTR process=2 andN; = 2)

gopt fl,opt = 0.8108 62,0;015 = 0.4728
0.8108 0 0.4728 0
A | A= g3496 08108 | 27| 07765 0.4728

bi | by = [0.5853 — 0.4746]7 by = [0.8812 — 0.4166]"
Cm | Cp=1[0.4380 1.1225]7 Co = [2.3892 0.6261]7

3 T T T T T
14 T T \ — Control increment signal
Real output 2k
== Model output
12f ’W Idenmﬁcaﬁon phase \\lrdation mase 4 1t
J T | o JW M\
1
S 1
8r S
52
)
6 -3t
-4}
4H
-5}
2 6 I I I I I
u i 0 50 100 150 200 250 300
W time(s)

—I
0 50 100 150

Figure 3: Validation of Laguerre multiple models Figure 4 Control increment signal

Contrarily to the previous case the control and the
control increment signal drawn in Figur@sand 8
generate an output faithful to the reference signal as
in Figure9. From these figures we note the effect of
imposing constraints on input signals on the improve-
ment of the system output.

To prove the performances and the effectiveness

overflows affect the quality of system output as seenin
Figure6 where overshoot and oscillation characterise
the evolution of the output signal.

Constrained case: The physical constraints on in-
put signals are:

0< u(k+1i) < 1.33 i=0,-, Ny—1 of the proposed NMPC using LMM algorithm, a
comparison was made with the NMPC using GOBF-

—01<déu(k+i)< 01 i=0,---, N,—1 Volterra model 1]. The CSTR Process is modeld by
(98) a second order GOBF-Volterra model for an optimal

E-ISSN: 2224-2856 123 Volume 10, 2015



Wl(L.min_l)

(L.min™

WSEAS TRANSACTIONS on SYSTEMS and CONTROL

15

' — Control signal
10f
~15 H H H H H
0 50 100 150 200 250 300
time(s)
Figure 5: Control signal
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Figure 6: Reference and output signals
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Figure 7: Control increment signal
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1.4

— Control signal

1.2f

w_ (L.min™%)

0 50 100 150 200 250 300
time(s)

Figure 8: Control signal

- - Reference signal
— Output signal

Cb(KmoI.m_3)

0 50 100 150 200 250 300
time(s)

Figure 9: Reference and output signals

truncation orderk,,; = 2. In this case the GOBF-
Volterra model is characterized by an optimal pole
vector B,,,; and a parameter vectar given as follow
Bopt =[0.32 0.5 0.36 0.75]
(99)
C =25 1.52 3.20.75 0.031]

In Figure 10 we draw the reference signal and the
CSTR process output by applying the NMPC us-
ing LMM and the NMPC using the BOGF-Volterra
model. From this Figure we conclude that the NMPC
using LMM give better results to control the CSTR
process than the NMPC using GOBF-Volterra model.
In fact, the latter model output present two deficien-
cies in terms of precision and oscillation. To im-
prove the results of the NMPC using GOBF-\olterra
model it is necessary to increase the parameter num-
ber, which may increase the algorithm complexity.
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- - Reference signal

NMPC using LMM
——NMPC using GOBF-Volterra|

150 200 250
time(s)

0 50 100 300

Figure 10: Comparaision between NMPC using
LMM and NMPC using GOBF-Volterra model

v

Conclusion

In this paper, we have proposed a new nonlinear pre-
dictive control algorithm of nonlinear systems de-

scribed by decoupled state multiple models approach
using Laguerre basis for modelling sub-systems. One
more important advantage of the decoupled state mul-
tiple model approach is that its structure and the para-
metric reduction, can facilitate the controller design

problem and reduce the computational effort of the

NM

PC. The optimization problem of NMPC is a min-

imization of a quadratic criterion with respect to con-
straints on input signals. The control algorithm is eas-
ily solved and yields efficient results. It guarantees

the

stability of closed-loop system with respect to the

choice of the tuning parameters.
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