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Abstract:This paper proposes a nonlinear model based predictive control (NMPC) algorithm for nonlinear systems
by using multiple models approach. To have a less complexity model we expand each linear sub-model on an
orthogonal Laguerre basis, the characteristic pole of which should be optimized. In this paper we propose a pole
optimization algorithm based on the Gauss-Newton method and we use the provided Laguerre multiple model
(LMM) to synthesize a NMPC algorithm. The proposed pole optimization technique as well as the NMPC using
LMM approach are validated on a chemical reactor.
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1 Introduction

Model based predictive control (MPC) is a well-
established online control strategy which iteratively
computes a control signals by solving an optimiza-
tion problem over a future time horizon under certain
process constraints [1–3]. This optimization uses a
prediction model of the future plant behavior. The
closed-loop performance depends on the choice of an
appropriate model for prediction and several tuning
parameters [4] The goal of this work is to synthe-
size a nonlinear model based predictive control algo-
rithm (NMPC) of nonlinear systems modeled using
the multiple models approach proposed in the liter-
ature for nonlinear system modeling by Takagi and
Sugeno [5], in the context of fuzzy modeling [6]. This
approach represents a widespread class as it accu-
rately describes the behavior of a large number of non-
linear systems, although its study can be conducted
using theoretical tools developed in the linear frame-
work [7]. The concept of this approach is based on
splitting the nonlinear system behavior into a set of
operating regions and to describe each operating re-
gion by a local linear model or a sub-model. The
model describing the whole non linear system behav-
ior is obtained by interpolation variable weights made
between various linear models.

In practice, sub-models are obtained by identifi-
cation, linearization around different operating points
or by convex polytopic transformation [8]. In the first
situation we can identify, from input/output data, the
parameters of the local model corresponding to differ-

ent operating points. In the second and third situation,
it is assumed to have a nonlinear mathematical model
[9–12] . In this work, we adopt the black box models
that are identified from input/output data around dif-
ferent operating points. The major drawback of the
resulting model is its parametric complexity. To over-
come this problem, we propose to expand each sub-
model on a Laguerre basis that depends on a single,
real and stable pole [13,14]. The resulting model enti-
tled Laguerre multiple models (LMM) is a new repre-
sentation of multiple models approach using Laguerre
basis characterized by a parameter vector and a pole
vector. In this paper, we proceed to the identification
of Laguerre poles and the model coefficients. In a sec-
ond step we propose and develop a NMPC algorithm
using LMM by minimizing a quadratic criterion sub-
ject to a set of constraints. The optimization problem
is formulated as a quadratic programming (QP) [15].

This paper is organized as follows: in section
2 we remember the principle of multiple model ap-
proach. In section 3 we present the Laguerre multiple
models obtained from the expansion of FIR multiple
models on Laguerre bases. In section 4 we propose the
identification procedure of Laguerre multiple models,
where we develop a pole optimization algorithm. Sec-
tion 5 is devoted to develop the NMPC strategy where
the unconstrained and constrained cases are treated.
Finally, section 6 illustrates the identification proce-
dure given in section 4 by identifying a nonlinear
chemical CSTR reactor using the Laguerre multiple
models. The proposed NMPC algorithm is also used
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to control the output concentration of the CSTR re-
actor. To raise the efficiency of the proposed algo-
rithm we run it along with an NMPC algorithm build
on a GOBF-Volterra model of nonlinear process. The
supremacy of the proposed algorithm is confirmed.

2 Principle of multiple models ap-
proach

A multiple models is a set of LTI (Linear Time Invari-
ant) and causal sub-models aggregated by an interpo-
lation mechanism to characterize the dynamic behav-
ior of the overall nonlinear system. It is character-
ized by the number of sub-models, their structure and
the choice of weighting functions. A multiple models
structure is represented by:

y(k) =
L∑

i=1

µi(ξ(k)) yi(k) (1)

where, ŷ(k) is the multiple models output,L is the
sub-model number,µi(ξ(k)) is the weighting function
associated to the ith sub-model,ξ(k) is the decision
variable and̂yi(k) is the output of theith sub-model.
The weighting functionsµi(ξ(k)) allow to determine
the relative contribution of each sub-model according
to the zone where the system operates and they respect
the convexity properties given as follow :

L∑

i=1

µi(ξ(k)) = 1, 0 ≤ µi(ξ(k)) ≤ 1 ∀ i = 1, · · · , L

(2)
The weighting functions can be constructed from con-
tinuous functions derivatives such as Gaussian func-
tions as follows :







wi(ξ(k)) = exp

(

−
(ξ(k) − ci)

2

σ2
i

)

µi(ξ(k)) =
wi(ξ(k))

L∑

j=1
wj(ξ(k))

(3)

whereσi and ci respectively are the dispersion and
the centre of the indexed variableξ(k) andL is the
number of sub-models.

3 Laguerre multiple models
In this section we exploit the FIR multiple models
in order to develop the Laguerre multiple models
(LMM). From relation (1), each sub-model can be de-
scribed by its output equationyi(k) given by a finite

impulse response (FIR) model as follow:

yi(k) =

ni−1∑

j=0

hi(j)u(k − j) (4)

which can be written in the matrix form as:

yi(k) = ϕT (k) θi (5)

with
{

ϕ(k) = [u(k) u(k − 1) . . . u(k − ni + 1)]T ,

θi =
[
hi(0) hi(1) hi(2) . . . hi(ni − 1)

]T

(6)
From relation (1) the FIR multiple models is given by:

y(k) =

L∑

i=1

µi(ξ(k)) ϕ
T (k) θi (7)

which can be written in matrix form as:

y(k) = ΦT (k) Θ (8)

whereΦ is the regression vector given by:

Φ(k) =
[
µ1(ξ(k))ϕ

T . . . µL(ξ(k))ϕ
T
]T

(9)

andΘ ∈ R
npF is the parameter vector defined as:

Θ =
[
θT1 θT2 . . . θTL

]T
(10)

The parameter number of the FIR multiple models is:

npF =
L∑

i=1

ni (11)

The parameter vectorΘ can be estimated using the
OLS method.

The major drawback of the FIR multiple models
representation is the high number of parameters. To
overcome this problem each sub-model is expanded
on a Laguerre basis [16]. According to the stability
condition of the system in the sense of Bounded In-
put Bounded Output criterion (BIBO) the coefficients
hi(j) are absolutely summable and they satisfy:

∞∑

j=1

∣
∣hi(j)

∣
∣ < ∞ i = 1, . . . , L (12)

Therefore they belong to the Lebesgue space
ℓ2 [0, +∞[. Noting that the orthogonal Laguerre
functions form an orthogonal basis in the Lebesgue
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space, the coefficientshi(j) can be then developed on
the Laguerre basesℑi = {ℓij}

∞

j=0 as follows:

hi(j) =

∞∑

n=0

gin ℓin(j, ζi), i = 1, . . . , L (13)

with ℓin(j, ζi) represents the orthogonal functions:

ℓin(j, ζi) =
√

1− ζ2i ζ
j
i (−ζi)

n

min(n,j)
∑

f=0

Cn
fC

j
f (
ζ2i − 1

ζ2i
)f

(14)
whereζi ∈]− 1, 1[ are the Laguerre poles character-
izing the basesℑi andgin are the Fourier coefficients
(i = 1, . . . , L). By replacinghi(j) given by (13) in
the sub-model defined by (4), the resulting sub-model
can be written as:

yi(k) =

ni−1∑

j=0

∞∑

n=0

gin ℓin(j, ζi)u(k − j), i = 1, . . . , L

(15)
Definingxin(k) the output ofnth filter:

xin(k) =

∞∑

j=1

ℓin(j, ζi) u(k − j) (16)

In practice, the sum in (13) can be truncated to a finite
orderNi, we have:

hi(j) =

Ni−1∑

n=0

gin ℓin(j, ζi), i = 1, . . . , L (17)

and the sub-model output is given by:

yi(k) =

Ni−1∑

n=0

gin xin(k), i = 1, . . . , L (18)

The expansion of all sub-models an Laguerre bases re-
sults on a new model titled "Laguerre multiple models
(LMM)" given by:

y(k) =
L∑

i=1

µi(ζ(k))yi(k) (19)

with yi(k) given by (18).

Defining the vectorsxi(k) andCi, (i = 1, . . . , L),
as:

xi(k) =
[
xi0(k) xi1(k) · · · xiNi−1(k)

]T
(20)

Ci =
[
gi0 gi1 · · · giNi−1

]T
(21)

we result in the following decoupled state Laguerre
multiple models (LMM):







xi(k + 1) = Aix
i(k) + biu(k)

yi = CT
i x

i(k)

y(k) =
L∑

i=1

µi(ξ(k))yi(k)

(22)

with, for (r = 1, · · · , Ni) and(s = 1, · · · , Ni)

Ai(r, s) =







ζi if r = s

(−ζi)
(r−s−1)(1− ζ2i ) if r > s

0 if r < s
(23)

and

bi(r) = (−ζi)
r−1
√

1− ζ2i · · · , Ni) (24)

The outputy(k) of LMM given by (22) can be written
in the vector form as:

y(k) = CT
mXm(k) (25)

where the parameter vectorCm and the state vector
Xm(k) arenpL-dimensional and given as follow:

Cm =











C1
...
Ci

...
CL











, Xm(k) =











µ1(ξ(k))x
1(k)

...
µi(ξ(k))x

i(k)
...

µL(ξ(k))x
L(k)











(26)
with

npL =
L∑

i=1

Ni (27)

4 Identification of Laguerre multiple
models

To identify the Laguerre multiple models, withL
sub-models andN truncated order, it is necessary to
optimise the poles vectorζm ∈ R

L.

ζm = [ζ1, · · · , ζi, · · · , ζL] (28)

As each Laguerre sub-model is characterized by(Ni)
parameters, therefore, we have to identify(npL) pa-
rameters.
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4.1 Structural identification
The identification of Laguerre multiple models struc-
ture consists on estimating the numberL of sub-
models and the truncation ordersNi, (i = 1, . . . , L).
We start by identifying the optimal numberL of sub-
models by setting the truncation orders. Then, we op-
timize the truncation ordersNi for the optimal num-
ber of sub-model. Both optimizations are based on
the minimisation of the Normalized Mean Square Er-
ror (NMSEdB):

NMSEdB = 20log10(

M∑

k=1

(ys(k)− y(k))2

M∑

k=1

(ys(k)
2)

) (29)

whereM is the measurement number,ys(k) is the
system output andy(k) is the model output.

4.2 Parametric identification
According to relation (25) we can apply the ordinary
least square (OLS) method [17] to identify the param-
eter vector and consequently the Fourier coefficients
of Laguerre sub-models.

Cm = (XT
X)−1

X
TYs (30)

whereX is the (M × npL)-dimensional matrix con-
taining theM state vectors andYs is the measurement
vector:

Ys = [ys(1), . . . , ys(M)]T (31)

and

X =








Xm(1)T

Xm(2)T

...
Xm(M)T







=










ν11(x
1)T (1) · · · νi1(xi)

T (1) · · · νL1(xL)
T (1)

ν12(x1)
T (2) · · · νi2(xi)

T (2) · · · νL2(xL)
T (2)

...
. . .

...
. . .

...
ν1M (x1)

T (M) · · · νiM (xi)
T (M) · · · νLM (xL)

T (M)










(32)
whereνik = µi(ξ(k)), for (i = 1, ..., L) and (k =
1, ...,M), and theXm(k) vector is given by the rela-
tion (26)

4.3 Pole optimization
For the optimization of the poles vectorζm given by
(28) we execute the Gauss-Newton method as:

ζp+1
m = ζpm − (H(ζm)− λI)−1G(ζm) (33)

where the gradientG(ζm) and the Hessian matrix
H(ζm) are given by:

G(ζm) =
∂J(ζm)

∂ζm
(34)

H(ζm) =
∂2J(ζm)

∂ζm∂ζTm
=

∂J(ζm)

∂ζm

∂J(ζm)

∂ζTm
(35)

andJ(ζm) is the mean square error defined as:

J(ζm) =
1

2

M∑

k=1

ε(k)2 =
1

2

M∑

k=1

(y(k)− ys(k))
2 (36)

and its derivative is:

∂J(ζm)

∂ζm
=

M∑

k=1

(y(k)− ys(k))
∂y(k)

∂ζm
(37)

where:

∂y(k)

∂ζm
=

L∑

i=1

µi(ξ(k))
∂yi(k)

∂ζm
(38)

with, for (i = 1, · · · , L):

∂yi(k)

∂ζm
=

[
∂yi(k)

∂ξ1

∂yi(k)

∂ξ2
· · ·

∂yi(k)

∂ξr
· · ·

∂yi(k)

∂ξL

]

(39)
By using equation (22), we can write for(i, r =
1, · · · , L):

∂yi(k)

∂ξr
=

∂CT
i

∂ξr
xi(k) + CT

i

∂xi(k)

∂ξr
(40)

The gradient ofxi(k) with respect toξr is:

∂xi(k)

∂ξr
=

∂Ai

∂ξr
xi(k−1)+Ai

∂xi(k − 1)

∂ξr
+
∂bi
∂ξr

u(k−1)

(41)
SinceAi andbi depend only onξi, therefore:

∂Ai

∂ξr
= 0 et

∂bi
∂ξr

= 0 if i 6= r (42)

from relations (41) and (42) and since the initial state
of theith state vector is constant, we conclude that:

∂xi(k)

∂ξr
= 0 if i 6= r (43)

Therefore, the gradient ofyi(k) with respect toξr is
written:

∂yi(k)

∂ξr
=







∂CT
i

∂ξr
xi(k) + CT

i

∂xi(k)

∂ξr
if i = r

∂CT
i

∂ξr
xi(k) if i 6= r

(44)
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According to (23), the gradient of the matrixAi is
given as follows:

∂Ai(r, s)

∂ζi
=







1 if r = s

−(r − s− 1)(−ξi)
(r−s−2)(1− ζ2i )

+2(−ζi)
(r−s) if r > s

0 if s < r
(45)

and, according to the relation (24), the gradient of the
vectorbi is written:

∂bi(r)

∂ζi
= −(r − 1)(−ζi)

(r−2)
√

1− ζ2i

+(−ζi)
(r−1) −ζi

√

1− ζ2i
(46)

To compute the gradient of theith parameter vectorCi

with respect torth poleξr, we compute that ofCm:

∂Cm

∂ξr
=

[
∂C1

∂ξr

∂C2

∂ξr
· · ·

∂Ci

∂ξr
· · ·

∂CL

∂ξr

]

(47)
where, (r = 1, 2, · · · , L)
From relation (30) we have:

∂Cm

∂ξr
=

∂
[(
X
T
X
)
−1
]

∂ξr
X
T ys +

(
X
T
X
)−1 ∂XT

∂ξr
ys

(48)
or

∂Cm

∂ξr
= −

(
X
T
X
)
−2
[
∂XT

∂ξr
X+ X

T ∂X
∂ξr

]

X
T ys+

(
X
T
X
)
−1 ∂XT

∂ξr
ys

(49)
where the matrixX is given by the relation (32) and
its gradient with respect toξr is given, using (41) and
(43), by:

∂X

∂ξr
=

























01×[(r−1)(N+1)] µr(ξ(1))
∂xT

r (1)

∂ξr
01×[(L−r)(N+1)]

01×[(r−1)(N+1)] µr(ξ(2))
∂xT

r (2)

∂ξr
01×[(L−r)(N+1)]

...
...

...

01×[(r−1)(N+1)] µr(ξ(M))
∂xT

r (M)

∂ξr
01×[(L−r)(N+1)]

























(50)

Algorithm 1 : Pole optimization algorithm

1. Assume thatM couples of input/output are avail-
able.

2. Choose the input or output as decision variable
ξ(t).

3. Fix the number of sub-modelL, the dispersion
σi and the centerci (i = 1, . . . , L).

4. Calculate the weighting functionsµi(ξ(t)) using
equation (3).

5. Fix a thresholdSe depending on the desired per-
formance.

6. Choose an initialL-dimensional pole vectorζpm
(p=1).

7. Identify the parameter vector̂Cm using the OLS
method given by equation (18).

8. Compute the gradientG(ζpm) given by (34) and
the Hessian matrixH(ζm) given by (35) of the
quadratic criterionJ(ζpm) with respect to the
poles vectorζpm.

9. Calculate the new pole vectorζp+1
m by relation

(33).

10. Calculate theNMSEdB given by (29) for the
new pole vectorζp+1

m .

11. If (NMSEdB > Se)
- p=p+1 ,
- go to step 7.

12. Else, end of the algorithm

5 NMPC using Laguerre multiple
models

5.1 Principle of the predictive control

The Model Based Predictive Control (MPC) is char-
acterized by two essential steps:

• The calculation of the system output prediction
y(k + j/k) to determine the process behavior
on the prediction horizon[k + 1, k + Np + 1]
depending on inputs applied to the process until
the instant(k − 1)T , the outputs measured until
the instantkT and the equations describing the
model,T is the sample time.

• The optimisation of a criterion to determine a fu-
ture control sequence over the control horizon
Nu

Only the first element of the optimized sequence is
applied to the process.
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5.2 Thej-step ahead predictor

Thej-step ahead predictor on the multiple models ap-
proach outputy(k+ j/k) is calculated from the equa-
tion system (22) by multiplying both members of both
equations by the polynomial(1 − z−1), wherez−1 is
the backward shift operator, where:

δxi(k) = Aiδxi(k − 1) + biδu(k − 1) (51a)

y(k) = y(k − 1) +

L∑

i=1

µi(ξ(k − 1))CT
i δxi(k)+

L∑

i=1

[µi(ξ(k))− µi(ξ(k − 1))]CT
i xi(k)

(51b)
whereδu(k) andδxi(k) are the control increment and
the state vector increment, respectively, defined as :

δu(k) = u(k)−u(k−1), δxi(k) = xi(k)−xi(k−1)
(52)

The j-step ahead prediction of the output is given
from (51b) by:

y(k + j/k) = y(k + j − 1) +

L∑

i=1

µi(ξ(k + j − 1))CT
i δxi(k + j)+

L∑

i=1

[µi(ξ(k + j))− µi(ξ(k + j − 1))]CT
i xi(k + j)

(53)
By successive substitutions and taking into account of
y(k/k) = y(k), relation (53) leads to:

y(k + j/k) = y(k) +

j
∑

l=1

[
L∑

i=1

µi(ξ(k + l− 1))CT
i δxi(k + l)+

L∑

i=1

[µi(ξ(k + l))− µi(ξ(k + l − 1))]CT
i xi(k + l)

]

(54)
theith state vector to the(k + l)th iteration,xi(k + l),
can be written in terms ofith state vector increment
δxi(k):

xi(k + l) = xi(k) +
l∑

m=1

δxi(k +m) (55)

defining:

δµi(ξ(k+ l)) = µi(ξ(k+ l))−µi(ξ(k+ l−1)) (56)

and the output prediction becomes:

y(k + j/k) = y(k) +

j
∑

l=1

L∑

i=1

δµi(ξ(k + l))CT
i xi(k)+

j
∑

l=1

L∑

i=1

µi(ξ(k + l − 1))CT
i δxi(k + l)+

j
∑

l=1

L∑

i=1

δµi(ξ(k + l))CT
i

l∑

m=1

δxi(k +m)

(57)
After some arrangement we obtain:

y(k + j/k) = y(k) +

j
∑

l=1

L∑

i=1

δµi(ξ(k + l))CT
i xi(k)+

L∑

i=1

j
∑

l=1

[

µi(ξ(k + l − 1)) +

j
∑

n=l

δµi(ξ(k + n))

]

CT
i δxi(k + l)

(58)
where, from (51a) and by successive substitutions the
state vector predictorδxi(k + j) is:

δxi(k+ l) = Al
i δxi(k)+

l∑

m=1

Al−m
i bi δu(k+m−1)

(59)
By replacing in equation (58), δx̂i(k + l) by its ex-
pression given by (59), we obtain:

y(k + j/k) = y(k) +
L∑

i=1

j
∑

l=1

δµi(ξ(k + l)) CT
i xi(k)+

L∑

i=1

µi(ξ(k + j)) CT
i

(
j
∑

l=1

Al
i

)

δxi(k)+

L∑

i=1

µi(ξ(k + j)) CT
i

j
∑

l=1

(
j−l
∑

h=0

Ah
i

)

bi δu(k + l − 1)

(60)
defining:

Ki,n =
n∑

r=0

Ar
i pourn ≥ 0 etKi,n = 0 for n < 0

(61)
equation (60) becomes:

y(k + j/k) = y(k) +

L∑

i=1

j
∑

l=1

δµi(ξ(k + l)) CT
i xi(k)+

L∑

i=1

µi(ξ(k + j)) CT
i

[
K(i,j−l) − INi

]
δxi(k)+

L∑

i=1

µi(ξ(k + j)) CT
i

j
∑

l=1

K(i,j−l) bi δu(k + l − 1)

(62)
whereINi

is theNi-diemsional identity matrix andNi

is the truncation order of theith sub-model. Thej-step
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ahead predictor is split into two components, the free
and the forced components:

y(k + j/k) = yfr(k + j/k) + yfo(k + j/k) (63)

whereyfr(k+ j/k) is the free component determined
using the measured outputs tillkT and the control up
to (k − 1)T .

yfr(k + j/k) = y(k) +
L∑

i=1

j
∑

l=1

δµi(ξ(k + l))CT
i xi(k)

+

L∑

i=1

µi(ξ(k + j)) CT
i

[
K(i,j−l) − INi

]
δxi(k)

(64)

andyfo(k + j/k) is the forced component resulting
from the action of future control.

yfo(k + j/k) =
L∑

i=1

[

µi(ξ(k + j))CT
i

j
∑

l=1

K(i,j−l) biδu(k + l − 1)

]

(65)
For j = 1, . . . , Np, relation (63) becomes:

Y (k) = Yfo(k) + Yfr(k) (66)

where:






Y (k) =
[
y(k + 1/k) · · · y(k +Np/k)

]T

Yfr(k) =
[
yfr(k + 1/k) · · · yfr(k +Np/k)

]T

Yfo(k) =
[
yfo(k + 1/k) · · · yfo(k +Np/k)

]T

(67)
The vectorsYfr(k) and Yfo(k) are computed from
(64) and (65), respectively, for(i = 1, · · · , Np).
Then, the prediction vectorY (k) is written in matrix
form:

Y (k) = G δU(k) + Yfr(k) (68)

whereδU(k) is theNp-dimensional future control in-
crement vector.

δU(k) = [δu(k) δu(k + 1) · · · δu(k +Np − 1)]T

(69)
and theNp-dimensional matrixG is given by:

G =








g10 0 · · · 0
g21 g20 · · · 0
...

...
. . .

...
gNpNp−1 gNpNp−2 · · · gNp0








(70)

from (65), the componentsgjn (n = 0, . . . , Np− 1)
and(j = 1, . . . , Np) can be written as:

gjn =

L∑

i=1

µi(ξ(k + j)) CT
i Ki,n bi (71)

Taking into account the control horizonNu the rela-
tion (65) becomes:

yfo(k + j/k) =
L∑

i=1



µi(ξ(k)) C
T
i

min(j, Nu)∑

l=1

K(i,j−l) bi δu(k + l − 1)





(72)
Consequently the sizes of the matrixG and the vector
δU(k) are reduced to(Np × Nu) andNu, respec-
tively.

G =













g10 0 · · · 0
g21 g20 · · · 0
...

...
. . .

...
gj(Nu−1) gj(Nu−2) · · · gj0

...
...

...
...

gNp(Np−1) gNp(Np−2) · · · gNp(Np−Nu)













(73)
and

δU(k) = [δu(k) δu(k + 1) · · · δu(k +Nu − 1)]T

(74)

5.3 Control calculation
The control calculation is based on the minimization
of the following performance quadratic criterion:

J2(δU(k)) =

Np∑

j=1

[y(k + j/k)− r(k + j)]2+

Nu−1∑

j=0

λ(j)δu2(k + j)

(75)
whereλ(j) is a weighting factor generally considered
constant and equal toλ andr(k + j) is the reference
signal at time instant(k + j).

Two cases will be discussed depending on the
consideration or not of physical constraints.

5.3.1 Unconstrained case

The quadratic criterionJ2(δU(k)) given by (75) can
be written in matrix form as:

J2(δU(k)) = ‖Y (k)−R(k)‖2 + δU(k)TΛδU(k)
(76)
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whereΛ is a diagonal weighting matrix, positive def-
inite, whose diagonal elements areλ, Y (k) is the
prediction vector given by (67) andR(k) is theNp-
dimensional reference vector given by:

R(k) =
[
r(k + 1) · · · r(k +Np)

]T
(77)

and
Λ = λINu

(78)

Tacking into account (68), relation (76) becomes:

J2(δU(k)) = ‖GδU(k) + Yfr(k)−R(k)‖2 + δU(k)TΛ δU(k)

= δUT (k) D δU(k) + 2dT δU(k) + c
(79)

with:

D = GTG+ Λ, d = 2GT (Yfr(k)−R(k)) and
c = (Yfr(k)−R(k))T (Yfr(k)−R(k))

(80)
The minimisation of (79) results in:

δU(k) = −D−1d = −(GTG+Λ)−1GT (Yfr(k)−R(k))
(81)

Only the first component ofδU(k) is used to calculate
the commandu(k) to be applied to the process.

5.3.2 Constrained case

In practice, the processes to be controlled are gener-
ally subject to the constraints of the actuators tech-
nology, the control system security or the quality de-
sired for the output of the controlled process. MBPC
methods allow to take into account some of these con-
straints explicitly at minimizing the performance cri-
terionJ2, to prevent their violation. These constraints,
of inequality type, are generally related to the input /
output signal amplitude on the prediction horizon.

δum ≤ δu(k + j) ≤ δuM ∀ j ∈ {0, · · · , Nu − 1}
(82)

um ≤ u(k + j) ≤ uM ∀ j ∈ {0, · · · , Nu − 1}
(83)

ym ≤ y(k + j) ≤ yM ∀ j ∈ {1, · · · , Np} (84)

Noting that:

u(k + i) =

j
∑

h=0

δu(k + j − h) + u(k − 1)

=

[
1, · · · , 1
︸ ︷︷ ︸

j+1

0, · · · , 0
︸ ︷︷ ︸

Nu−j−1

]T

δU(k) + u(k − 1)

(85)

we have:

U(k) = D1 δU(k) + V1(k − 1) (86)

where theNu-dimensional vectorsδU(k) andV1 and
square matrixD1 are defined by:

δU(k) =








δu(k)
δu(k + 1)

...
δu(k +Nu − 1)







, V1 =








u(k − 1)
u(k − 1)

...
u(k − 1)








and D1 =









1 0 · · · 0

1 1
. .. 0

...
...

. ..
...

1 1 . . . 1









(87)

Replacing the outputy(k+ j) by their expression pre-
dictedy(k+j/k) setting, forj = (1, · · · , Np), in the
decomposed form (68) the constraint (84) becomes:

Ym ≤ G δU + Yfr(k) ≤ YM (88)

The constraints (82-84) can be written as a function of
the future control increment vectorδU(k):

ΓδU ≤ V (89)

with :

Γ =











INu

−INu

D1

−D1

G
−G











and V =











δUM

−δUm

UM − V1

−Um + V1

YM − Yfr(k)
−Ym + Yfr(k)











(90)
where theNu-dimensional vectorsUM , Um, ∆UM

and∆Um are defined as follow:

UM = [uM · · · uM ]T , Um = [um · · · um]T

∆UM = [δuM · · · δuM ]T , ∆Um = [δum · · · δum]T

(91)
and theNp-dimensional vectorsYM , Ym andYfr are
given by:

YM = [yM · · · yM ]T , Ym = [ym · · · ym]T

Yfr = [yfr(k + 1/k) · · · yfr(k +Np/k)]
T

(92)
These constraints define a set of control increments as
follow:

Ψ = {δU(k) / ΓδU ≤ V } (93)
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Taking into account the constraints (82-84) on the in-
put and output signals leads to solving the constraints
optimization problem, as follows:

min
δU(k)∈Ψ

(J2(δU(k))) = min
δU(k)∈Ψ

(δUT (k)DδU(k)+

2dT δU(k) + c)
(94)

whereΨ is defined by (93).

The Hessian matrix∇2J2(δU(k)) = 2D of the
function J2(δU(k)) is positive definite, so that func-
tion is strictly convex. Moreover, the constraints
(93) defining the convex admissible setΨ are lin-
ear. Therefore, the optimization problem (94) subject
to (93) is a convex quadratic programming problem
(QP), for which the global solution is unique [18].
Similarly to the unconstrained case, only the first com-
ponent ofu(k) is applied to the system.

Algorithm 2 : NMPC Algorithm using Laguerre
multiple models

1. The nonlinear system is modeled by the multi
model approach using Laguerre basis where the
poles vectorζm is optimized by Algorithm 1 and
the parameters vectorCm is identified by OLS
method.

2. Choose the prediction horizonNp, the control
horizonNu and determine theNu-dimensional
diagonal weighting matrixΛ.

3. Choose the physical constraints given by (82-
84).

4. Compute theNu-dimensional vectorsUM , Um,
∆UM and∆Um given by (91).

5. Compute the matricesAi andbi in terms ofζm(i)
for (i = 1, . . . , L) using equations (23) and
(24), respectively.

6. Calculate the matricesG andD1 given by (73)
and (87), respectively.

7. Compute the matrixΓ given by (90).

8. Choose the reference signalr(k) (k =
1, . . . , M) and initializing the inputu(1).

9. for k = 2 until (M −Np)

(a) Apply the inputsu(k−1) to the system and
read the outputy(k).

(b) For(i = 1, . . . , L) calculateδxi(k) given
by (51a)

(c) For(j = 1, . . . , Np)
- for (i = 1, . . . , L) calculateKi,j using

relation (61)

(d) (for j = 1, . . . , Np) computeR(k) given
by (77) andYfr given by (67).

(e) Compute the matrixD the vectord and the
scalarc given by (80).

(f) Compute the vectorV given by (90)

(g) Solve the optimization problem given by
(94) [15].

(h) Calculate the control signalu(k).

10. END

6 Application to a CSTR reactor
process

6.1 System presentation
The NMPC algorithm proposed in this paper is
applied to control the benchmark chemical reactor
CSTR [19] whose diagram is given by Figure1.

1
w

2
w

2b
C

1b
C

h

0
w

b
C

Figure 1: Diagram of the chemical reactor process
CSTR

The dynamical model of the system is given by:

∂h(t)

∂t
= w1(t) + w2(t)− 0.2

√

h(t) (95)

∂Cb(t)

∂t
= (Cb1 − Cb(t))

w1(t)

h(t)
+ (Cb2 − Cb(t))

w2(t)

h(t)

−
k1Cb(t)

(1 + k2Cb(t))2

(96)
whereh(t) is the liquid level,Cb(t) is the product
concentration at the process output,w1(t) and Cb1

are respectively the flow rate and the concentration
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of product 1, andw2(t) and Cb2 are the flow rate
and the concentration of product 2. The input con-
centrations are set toCb1 = 24.9 Kmol.m−3 and
Cb2 = 0.15 Kmol.m−3. The constants associ-
ated with the rate of consumption arek1 = 1 and
k2 = 1. The CSTR reactor is assumed to be a Sin-
gle Input Single Output (SISO) system withw1(t) as
input andCb as output. The flow ratew2(t) is fixed to
0.7 L.min−1 and the initial conditions for the CSTR
reactor areh(0) = 0.1m andCb(0) = 4Kmol.m−3.
The simulations are carried out with a sampling inter-
val T = 1s. We note that the outputCb is corrupted
by an additive white and gaussian noise which is inde-
pendent of the input signal and which ensures a signal
to noise ratio equal to20dB.

To apply the proposed NMPC algorithm given by
Algorithm 2 to the CSTR process, we start by de-
termining the corresponding Laguerre multiple model
which requires structural identification and truncation
order by minimizing the NMSE given by (29), para-
metric identification using the OLS method and poles
optimization by the proposed algorithm in this article
given by Algorithm1.

6.2 System identification

In these simulations the weighting functions are cho-
sen as a Gaussian type and the input is considered as
a decision variable with a dispersionσ = 0.5. The
CSTR process is identified by the FIR multiple mod-
els and the LMM for two and three sub-systems. The
identification results are evaluated by the mean square
error (MSE) given in Table1 and Table2 for FIR mul-
tiple models and LMM, respectively.

From both Tables we remark the significant para-
metric reduction obtained from the expansion of FIR
multiple models on Laguerre bases. For example,
for the FIR multiple models (Table1) we obtain
a MSE = −38.20dB for three sub-model and
sub-model order equal six,(ienpF = 18 parame-
ters). However, we obtain a smaller MSE(MSE =
−49, 74dB) for two sub-model and sub-model order
equal two (ienpL = 4 parameters) in the case of
LMM (Table 2).

In the flowing, and for applying the NMPC us-
ing Laguerre multiple models we can choose, from
Table2, to decompose the CSTR process to two sub-
systems, then we use two Laguerre sub-models. Then,
for have adequate MSE we fixe the truncation order to
two. The parameter vector is identified by the OLS
method and the poles is optimized by applying algo-

rithm 1. The identification of LMM is summarized
in Table3. In Figure2 we plot the variation of the
poles where we notice the fast convergence of the
proposed algorithm, and the optimal pole vector is
ζ = [0.8108 0.4728].
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Figure 2: Poles convergence

Thereafter, the CSTR dynamic model given by
(95) is modeled by the LMM (22) for a sub-model
numberL = 2 and a truncation orderN = 2, as fol-
lows:






x̂1(k + 1) = A1x̂
1(k) + b1u(k)

x̂2(k + 1) = A2x̂
2(k) + b2u(k)

ŷ(k) = µ1(ξ(k))Ĉ
T
1 x̂

1(k) + µ2(ξ(k))Ĉ
T
2 x̂

2(k)
(97)

where,A1 and b1 are calculated from (23) for ζ1 =
0.8108 andA2 and b2 are calculated from (23) for
ζ2 = 0.4728.

To validate the Laguerre multiple models, as well
as the identification procedure, we draw in Figure3
the variation of the CSTR reactor output and the out-
put of the model. We notice the concordance between
both outputs.

6.2.1 Control of CSTR using NMPC

The main objective is to maintain the output concen-
trationCb(t) constant by tuning the floww1(t) with
w2(t) = 0.1. The tuning parameters are:Np = 6,
Nu = 2 andλi = 0.5. unconstrained and constrained
cases are considered.

Unconstrained case: In Figures4 and 5 we draw
the control and the control increment signals and we
note the significant overflows in both signals. These
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Table 1: CSTR Process modeled by FIR multiple models

L 2 3
ni 2 3 4 5 6 2 3 4 5 6
npF 4 6 8 10 12 6 9 12

MSE (dB) -12.3 -18.2 -28.8 -29.4 -30.1 -20.6 -28.8 -35.4 -37.12 -38.20

Table 2: CSTR Process modeled by Laguerre multiple models

L 2 3
Ni 2 3 4 5 6 2 3 4 5 6
npL 4 6 8 10 12 6 9 12 15 18

MSE (dB) -49.74 -58.25 -65.90 67.28 68.07-60.57 -70.36 -73.48 -.73.9 -74.1

Table 3: Laguerre multiple models for CSTR process (L = 2 andNi = 2)

ξopt ξ1,opt = 0.8108 ξ2,opt = 0.4728

Ai A1 =

[
0.8108 0
0.3426 0.8108

]

A2 =

[
0.4728 0
0.7765 0.4728

]

bi b1 = [0.5853 − 0.4746]T b1 = [0.8812 − 0.4166]T

Ĉm Ĉ1 = [0.4380 1.1225]T Ĉ2 = [2.3892 0.6261]T
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Model output

Figure 3: Validation of Laguerre multiple models

overflows affect the quality of system output as seen in
Figure6 where overshoot and oscillation characterise
the evolution of the output signal.

Constrained case: The physical constraints on in-
put signals are:






0 ≤ u(k + i) ≤ 1.33 i = 0, · · · , Np − 1

−0.1 ≤ δu(k + i) ≤ 0.1 i = 0, · · · , Np − 1
(98)
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Figure 4: Control increment signal

Contrarily to the previous case the control and the
control increment signal drawn in Figures7 and 8
generate an output faithful to the reference signal as
in Figure9. From these figures we note the effect of
imposing constraints on input signals on the improve-
ment of the system output.

To prove the performances and the effectiveness
of the proposed NMPC using LMM algorithm, a
comparison was made with the NMPC using GOBF-
Volterra model [1]. The CSTR Process is modeld by
a second order GOBF-Volterra model for an optimal
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Figure 5: Control signal
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Figure 6: Reference and output signals

0 50 100 150 200 250 300
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

time(s)

δ 
w

1(L
.m

in
−

1 )

 

 

Control increment signal

Figure 7: Control increment signal
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Figure 8: Control signal
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Figure 9: Reference and output signals

truncation orderKopt = 2. In this case the GOBF-
Volterra model is characterized by an optimal pole
vectorBopt and a parameter vectorC given as follow
:

{
Bopt = [0.32 0.5 0.36 0.75]
C = [2.5 1.52 3.2 0.75 0.031]

(99)

In Figure 10 we draw the reference signal and the
CSTR process output by applying the NMPC us-
ing LMM and the NMPC using the BOGF-Volterra
model. From this Figure we conclude that the NMPC
using LMM give better results to control the CSTR
process than the NMPC using GOBF-Volterra model.
In fact, the latter model output present two deficien-
cies in terms of precision and oscillation. To im-
prove the results of the NMPC using GOBF-Volterra
model it is necessary to increase the parameter num-
ber, which may increase the algorithm complexity.
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Figure 10: Comparaision between NMPC using
LMM and NMPC using GOBF-Volterra model

7 Conclusion

In this paper, we have proposed a new nonlinear pre-
dictive control algorithm of nonlinear systems de-
scribed by decoupled state multiple models approach
using Laguerre basis for modelling sub-systems. One
more important advantage of the decoupled state mul-
tiple model approach is that its structure and the para-
metric reduction, can facilitate the controller design
problem and reduce the computational effort of the
NMPC. The optimization problem of NMPC is a min-
imization of a quadratic criterion with respect to con-
straints on input signals. The control algorithm is eas-
ily solved and yields efficient results. It guarantees
the stability of closed-loop system with respect to the
choice of the tuning parameters.
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